Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing.

نویسندگان

  • Aimee L Jackson
  • Julja Burchard
  • Devin Leake
  • Angela Reynolds
  • Janell Schelter
  • Jie Guo
  • Jason M Johnson
  • Lee Lim
  • Jon Karpilow
  • Kim Nichols
  • William Marshall
  • Anastasia Khvorova
  • Peter S Linsley
چکیده

Transfected siRNAs regulate numerous transcripts sharing limited complementarity to the RNA duplex. This unintended ("off-target") silencing can hinder the use of RNAi to define gene function. Here we describe position-specific, sequence-independent chemical modifications that reduced silencing of partially complementary transcripts by all siRNAs tested. Silencing of perfectly matched targets was unaffected by these modifications. The chemical modification also reduced off-target phenotypes in growth inhibition studies. Key to the modification was 2'-O-methyl ribosyl substitution at position 2 in the guide strand, which reduced silencing of most off-target transcripts with complementarity to the seed region of the siRNA guide strand. The sharp position dependence of 2'-O-methyl ribosyl modification contrasts with the broader position dependence of base-pair substitutions within the seed region, suggesting a role for position 2 of the guide strand distinct from its effects on pairing to target transcripts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects

Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2-8 of either siRNA strand counting from the 5'-end) and complementary se...

متن کامل

Rationally designed siRNAs without miRNA-like off-target repression

Small interfering RNAs (siRNAs) have been developed to intentionally repress a specific gene expression by directing RNA-induced silencing complex (RISC), mimicking the endogenous gene silencer, microRNAs (miRNAs). Although siRNA is designed to be perfectly complementary to an intended target mRNA, it also suppresses hundreds of off-targets by the way that miRNAs recognize targets. Until now, t...

متن کامل

MicroRNA-like off-target transcript regulation by siRNAs is species specific.

siRNAs mediate sequence-specific gene silencing in cultured mammalian cells but also silence unintended transcripts. Many siRNA off-target transcripts match the guide-strand "seed region," similar to the way microRNAs match their target sites. The extent to which this seed-matched, microRNA-like, off-target silencing affects the specificity of therapeutic siRNAs in vivo is currently unknown. He...

متن کامل

Site-Specific Modification Using the 2′-Methoxyethyl Group Improves the Specificity and Activity of siRNAs

Rapid progress has been made toward small interfering RNA (siRNA)-based therapy for human disorders, but rationally optimizing siRNAs for high specificity and potent silencing remains a challenge. In this study, we explored the effect of chemical modification at the cleavage site of siRNAs. We found that modifications at positions 9 and 10 markedly reduced the silencing potency of the unmodifie...

متن کامل

5′ Unlocked Nucleic Acid Modification Improves siRNA Targeting

Optimization of small interfering RNAs (siRNAs) is important in RNA interference (RNAi)-based therapeutic development. Some specific chemical modifications can control which siRNA strand is selected by the RNA-induced silencing complex (RISC) for gene silencing. Intended strand selection will increase potency and reduce off-target effects from the unintended strand. Sometimes, blocking RISC loa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RNA

دوره 12 7  شماره 

صفحات  -

تاریخ انتشار 2006